Performansi Algoritma C4.5 untuk Prediksi Gizi pada Balita
DOI:
https://doi.org/10.33488/1.ma.2023.2.384Keywords:
Data Mining, Prediction, C4.5, Toddler NutritionAbstract
Fulfillment of good nutrition is an important component of optimal health. However, various nutritional disorders and malnutrition are caused by poor food quality or an amount of food that is not sufficient for the body's needs. especially in toddler nutrition. Children at this age are very vulnerable to experiencing nutritional problems because adequate nutritional intake is absolutely necessary during their growth and development. Child growth and development are important for parents to pay attention to nutritional problems in children. Diet also influences the nutritional status of toddlers. Nutrition is the most important intake for children's growth and development because good nutrition helps children develop normally. Therefore, it is necessary to process the nutritional value of toddlers to predict accuracy, regardless of whether the baby is undernourished, well-nourished, or overnourished. From the results of testing and evaluating the performance of the C4.5 data mining algorithm, it produces an accuracy value of 100% when using training data and testing data comparisons of 90%:10%, 80%:20%, and 70%:30%.
Downloads
References
Bappenas. (2018). Pedoman Pelaksanaan Intervensi Penurunan Stunting Terintegrasi di Kabupaten/Kota. Kementerian Perencanaan Pembangunan Nasional.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining, Concepts and Techniques (Third Edit). Morgan Kaufmann Publishers.
Hutasoit, A. S., Tarigan, P., & Siagian, E. R. (2018). Implementasi Data Mining Klasifikasi Status Gizi Balita pada Posyandu Medan Timur dengan Menggunakan Metode C4.5. Jurnal Pelita Informatika Budi Darma, 7(2), 120–125.
Islam, H. I., Mulyadien, M. K., & Enri, U. (2022). Penerapan Algoritma C4.5 dalam Klasifikasi Status Gizi Balita. Jurnal Ilmiah Wahana Pendidikan, 8(10), 116–125.
Kementerian Kesehatan RI. (2013). Hasil Riset Kesehatan Dasar.
Mahfuz, Nur, A. M., & Samsu, L. M. (2022). Penerapan Algoritma C4.5 dalam Mengklasifikasi Status Gizi Balita pada Posyandu Desa Dames Damai Kabupaten Lombok Timur. Infotek: Jurnal Informatika Dan Teknologi, 5(1), 72–81.
Marsita, M. (2018). Implementasi Algoritma Decision Tree C4.5 untuk Mengidentifikasi Gizi Balita Berdasarkan Indeks Antropometri (Studi Kasus Posyandu Seruni). UIN Sunan Gunung Djati.
Narulita, S., Prihati, Oktaga, A. T., & Widyantoro, A. E. (2023). Performansi Algoritma Clustering K-Means untuk Penentuan Status Malnutrisi pada Balita. Jurnal Informasi, Sains, Dan Teknologi, 6(1), 188–202. https://isaintek.polinef.ac.id/index.php/isaintek/article/view/128
Riani, A., Susianto, Y., & Rahman, N. (2019). Implementasi Data Mining untuk Memprediksi Penyakit Jantung Menggunakan Metode Naive Bayes. JINITA: Journal of Innovation Information Technologi and Application, 1(1), 25–34.
Wanto, A., Siregar, M. N. H., Windarto, A. P., Hartama, D., Ginantra, N. L. W. S. R., Napitupulu, D., Negara, E. S., Lubis, M. R., Dewi, S. V., & Prianto, C. (2020). Data Mining: Algoritma dan Implementasi. Yayasan Kita Menulis.
Zami, A. Z., Nurdiawan, O., & Dwilestari, G. (2022). Klasifikasi Kondisi Gizi Bayi Bawah Lima Tahun pada Posyandu Melati dengan Menggunakan Algoritma Decision Tree. JSON: Jurnal Sistem Komputer Dan Informatika, 3(3), 305–310.
Downloads
Published
Issue
Section
License
Media Aplikom applies the Creative Commons Attribution (CC BY) license to works we publish. Under this license, authors retain ownership of the copyright for their content, grant the journal right of first publication, but allow anyone to download, reuse, reprint, modify, distribute and/or copy the content as long as the original authors and source are cited. No permission is required from the authors or the publishers. Appropriate attribution can be provided by simply citing the original article.
